World's Longest Endurance Power Solutions for Electric UAS

AEROPAK 450-700Wh/kg high performance fuel cell energy storage systems

H_{2} GAS (G-SERIES) Composite Vessels

Up to $550 \mathrm{~Wh} / \mathrm{kg}$

- Lowest fuel cost (\$1/hr @ 200W)
- Simple plug \& play system
- Excellent choice if space is available
- Best option for commercial UAV
- Lightweight and high efficiency

LIQUID CHEMICAL (L-SERIES) H_{2} on-demand

Up to $675 \mathrm{~Wh} / \mathrm{kg}$

- Controlled hydrogen on demand system
- Smaller size and lighter than gas option
- Non-gaseous fuel / easy to handle
- Better choice for remote area operations
- Progressive fuel weight reduction in flight

SOLID CHEMICAL (s-SERIES) H_{2} on-demand

Up to $750 \mathrm{~Wh} / \mathrm{kg}$

- Controlled Hydrogen on demand system
- Smallest size, lightest of all options
- No catalysts required
- Infinite fuel storage life before use
- No waste fuel

Fly small aerial drones at low altitude UAVs FOR HOURS AT A TIME

NEW - real-time system interface compatible with any device. Data via CAN, Bluetooth, IP, Serial Real time diagnostics and monitoring

Weight (kg)

HES is regarded as the most advanced fuel cell technology systems developer in the world, with energy densities already exceeding the 2015 performance targets set by US DOE in 2015. The company works mostly under confidential on-going contracts with several leading OEM customers around the world, while offering off-the-shelf versions of its special grade fuel cells.

FUEL STORAGE

Using compressed hydrogen vessels is the least complex solution at system level, and offers the lowest operational costs. It is possible to adapt small or large vessels to the front section of AEROPAK while using a specially designed pressure reducer developed for this purpose by HORIZON ENERGY SYSTEMS. Different vessel sizes offer more ore less energy stored, and can be matched with smaller or larger stacks - standard or custom-designed for your needs.

Several configuration options are offered as standard items, HES also supplies CUSTOM solutions are available on request, Just contact our engineering team on sales@hes.sg

At just 570g for 200W rated (Inclusive of all peripherals) HORIZON ENERGY SYSTEMS supplies the world's lightest fuel cell systems.

AEROSTAK 200W PEM FC

Number of cells ... 35
Rated power ... 200 W Peak power ... 220 W Stack weight(with fan \& casing).................... 570 g Controller weight ...80g Stack size (with casing)...L $107 \times$ W $126 \times$ H 120 (mm)

AEROSTAK 500W PEM FC

Number of cells
... .45
Rated power.
.500 W
Stack weight (with fan \& casing).......1150g ($\pm 50 \mathrm{~g}$)
Controller weight $250 \mathrm{~g}(\pm 30 \mathrm{~g})$
Stack size (excl. electronics)...L $192 \times$ W $107 \times$ H 146

AEROSTAK 1000W PEM FC

Number of cells
. 50
Rated power ... 1000 W
Stack weight(with fan \& casing)........2200g ($\pm 50 \mathrm{~g}$)
Controller weight
$.250 \mathrm{~g}(\pm 30 \mathrm{~g})$
Stack size (excl. electronics)... L $252 \times$ W 126×190

The AEROPAK system is comprised of 3 sections: a fuel tank - where the hydrogen-rich NaBh 4 mix is poured, a reactor system that produces pure hydrogen gas with the help of a special catalyst, and a third section which integrates a fuel cell stack, electronics, and small peripherals. Electronics hybridize AEROPAK with an external battery for peak power.
CARTRIDGE TYPE 2

Continuous Output Power:
Peak Power (hybrid battery):
Continuous Output current:
Output Voltage Range:
FC System Weight:
Dimensions (mm):
Operating environment:
Max altitude with no change:

TYPE 1 (can be customized)

Net Energy:	up to 900 Wh
Dry Weight:	520 g
Total Weight with 1L fuel:	1570 g
Total Cartridge Volume:	2.3 L
Size (mm):	$180 \times 106 \times 120$
H2 flow rate:	$0.3 . \mathrm{L} / \mathrm{min}$
Output pressure:	0.7 bar
Connection	quick-connector
Total FC + Cartridge Weight	2.1 kg on take-off (landing weight is 1.5 kg)
Total FC + Cartridge Volume:	2.2 L
Total Specific Energy	$\mathbf{4 5 0 W h} / \mathrm{kg}$ (at take-off)
Average Energy Density	$\mathbf{6 7 5 W h} / \mathrm{kg}$ (landing Vs take off weight)

200W
600W for 2 min.
10A
20V-32V
570 g
$107 \times 126 \times 120$
0C-40C / 0-95\% humidity
3000 m (can be adjusted)

CARTRIDGE TYPE 1

(Includes H 2 generator + fuel tank)

(Includes H2 generator + fuel tank)

TYPE 2 (can be customized)

Net Energy:	up to 1700 Wh
Dry Weight:	1200 g
Total Weight with 1L fuel:	3100 g
Total Cartridge Volume:	2.3 L
Size $(\mathrm{mm}):$	$180 \times 106 \times 120$
Total FC + Cartridge Weight	2.1 kg on take-off (landing weight is 1.5 kg)
Total FC + Cartridge Volume:	3.8 L
Total Specific Energy	$\mathbf{5 5 0 W h} / \mathrm{kg}$ (at take-off)
Average Energy Density	$\mathbf{7 0 0 W h} / \mathrm{kg}$ (landing Vs take off weight)

FUEL STORAGE

Introducing a NEW, high performance SOLID hydrogen on demand cartridge system for its AEROPAK product line. This new SOLID system offers a theoretical 14% hydrogen storage weight content, and yields a practical 7\%, placing at the performance edge of today's hydrogen storage technologies. In effort to continuously improve usability - this system is plug and play, with no complex reactor componentry, operates without any catalyst, and self-contains its waste by-product.

CUSTOM SOLUTIONS AVAILABLE - Please feel free to enquire with our team on development of systems based on available shapes/dimensions and other constraints, should our readily available COTS solutions fail to meet your specific needs. We'll design according to your needs.

At the edge of US Department of Energy targets

World's Longest Endurance Power Systems for Electric UAS

STANDARD OFF-THE-SHELF kits - options \& components

AEROSTAK A-200: $\mathbf{5 0 0 \mathrm { g }}$ /200W fuel cell system including peripherals

- Extremely compact and lightweight
- Built in controls and customizable housing
- Compatible with H2-generating cartridges or compressed H 2 tanks

AEROPAK G-SERIES with compressed H2 vessel (standard tank is 1.1L)

- includes titanium pressure regulator
- Plug and play solution
- Refillable tanks, requires on-site filling capability

AEROPAK G-SERIES compatible carbon-fiber reinforced composite $\mathbf{H} 2$ vessel
CCL01-01

- compact and lightweight (ask for our available sizes)
- fast charging time
- hydrogen charging pressure up to 300bar

AEROPAK G-SERIES compatible 2-step Horizon pressure regulator
APKCR01-01

- lightweight design
- designed for use with hydrogen gas
- reduces high pressure (300bar) to low consistent pressure (0.4 to 0.65bar)

AEROPAK L-SERIES / Type 1 Cartridge : 450Wh/kg complete FC system

- Compact and ultra-lightweight system (2kg)
- Built in controls and customizable housing
- Comes with communication interface

AEROPAK L-SERIES / Type $\mathbf{2}$ Cartridge: $550 \mathrm{~Wh} / \mathrm{kg}$ complete FC system

- Compact and ultra-lightweight system (3kg)
- Built in controls and customizable housing
- Comes with communication interface

AEROPAK L-SERIES Cartridge Type 1: 900Wh H2 generating cartridges

- Non-hydrogen gas storage solution
- Waste by-product is purged on the fly, reducing weight during flight
- In-situ hydrogen generation capability

AEROPAK L-SERIES Cartridge type 2: 1700Wh H2 generating cartridges

- Non-hydrogen gas storage solution
- Waste by-product is purged on the fly, reducing weight during flight
- In-situ hydrogen generation capability

AEROPAK S-SERIES: 1200Wh Solid Chemical H2 generating cartridges

- Non-hydrogen gas storage solution
- Waste by-product is purged on the fly, reducing weight during flight
- In-situ hydrogen generation capability

World’s Longest Endurance Power Systems for Electric UAS

Custom engineering services / endurance power for unmanned vehicles

Fuel cell solutions are typically much lighter, but also take up more space than batteries. To make the most of the endurance benefits, certain adjustments need to be made to the aircraft design. We can help the scientists and engineers on your team - to develop the most optimal solution.

We also custom-design systems for:

- Mini-UAS ($5-12 \mathrm{~kg}$ TOW)
-Small Tactical UAS (12kg-80kg TOW)
-Unmanned Underwater Vehicles
-Ground Robot Vehicle systems
- Soldier Portable \& Stationary Systems

HES systems are scalable and can be offered in various configurations, taking into account nominal, peak, and continuous power levels, as well as duration, or other data communication and software requirements. The systems can be designed to maximize weight efficiency by reviewing the power profile of a typical flight. These are all parameters we analyze together with our clients in great detail prior to engaging on custom designs.

O Horizon Energy Systems
 SMALL DRONES, FOR
 BIG
 JOBS.

HES is regarded as the most advanced fuel cell technology systems developer in the world, with energy densities already exceeding the 2015 performance targets set by US DOE in 2015. HES has worked under a US DARPA program in 2010 and 2011, focused on novel power solution development in the field of micro-UAVs. Following a new world record flight distance set by NASA-backed teams and DLR engineers with our ultra-light fuel cell design, Horizon Energy Systems was formed in Singapore (2009), where it established its first laboratories. From Singapore, it has developed an international customer base in the field of unmanned aerial vehicles (UAV) in civilian and military applications.

In Singapore, Horizon Energy Systems (HES) develops ultra-light, high energy density power systems enabled by fuel cells and various on demand hydrogen supply solutions. Horizon's lightweight fuel cell systems stem from its in-cell ${ }^{\text {TM }}$ water management technology which avoids the use of heavy and bulky system peripherals. The HES engineering team and field experts work together to creatively solve the most challenging energy storage challenges. HES consistently innovates to create solutions that outperform, bringing out the best of fuel cells, solar, battery and capacitor technologies in optimally balanced hybrid systems.

Global partners \& clients

By
(ASA

3BlueBird Aero Systems

